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Abstract

Our knowledge of human brain evolution primarily relies on the interpretation of palaeoneurological evidence.

In this context, an endocast or replica of the inside of the bony braincase can be used to reconstruct a timeline

of cerebral changes that occurred during human evolution, including changes in topographic extension and

structural organisation of cortical areas. These changes can be tracked by identifying cerebral imprints,

particularly cortical sulci. The description of these crucial landmarks in fossil endocasts is, however, challenging.

High-resolution imaging techniques in palaeoneurology offer new opportunities for tracking detailed endocranial

neural characteristics. In this study, we use high-resolution imaging techniques to document the variation in

extant human endocranial sulcal patterns for subsequent use as a platform for comparison with the fossil record.

We selected 20 extant human crania from the Pretoria Bone Collection (University of Pretoria, South Africa),

which were detailed using X-ray microtomography at a spatial resolution ranging from 94 to 123 lm (isometric).

We used ENDEX to extract, and MATLAB to analyse the cortical imprints on the endocasts. We consistently identified

superior, middle and inferior sulci on the frontal lobe; and superior and inferior sulci on the temporal lobe. We

were able to label sulci bordering critical functional areas such as Broca’s cap. Mapping the sulcal patterns on

extant endocasts is a prerequisite for constructing an atlas which can be used for automatic sulci recognition.

Key words: brain cast; cerebral variation; human neuroanatomy; palaeoneurology; sulci detection.

Introduction

Together with comparative anatomy, the endocast or

replica of the internal table of the bony braincase can be

used to reconstruct the timeline and mode of cerebral

changes in human evolution (Holloway, 1978; Holloway

et al. 2004; de Sousa & Cunha, 2012). Identifying cerebral

imprints in endocasts of fossil hominin specimens is chal-

lenging due to poor preservation of fossils and inconsisten-

cies in characterisation and identification of landmarks.

Long-standing concerns exist regarding the correlation

between the gyral and sulcal patterns on the brain, and the

bulges and furrows imprinted on the braincase (Le Gros

Clark et al. 1936; Kobayashi et al. 2014; Minh & Hamada,

2017; Bruner & Ogihara, 2018). Controversy also surrounds

early descriptions of these patterns in fossil endocasts, which

mostly relied on visual inspection and palpation of the

endocranial surface (Falk, 1980a,b, 1983; Holloway, 1981).

The accuracy of the cerebral details on the endocranial sur-

face is also affected by the presence of intracranial compo-

nents, including arterial supply of the brain, cerebrospinal

fluid and meningeal membranes (Neubauer, 2014). The sul-

cal patterns in extant human brains are also variable, further

complicating anatomical comparisons (Ribas, 2010).

The accurate identification of sulcal imprints on fossil

endocasts is of prime interest in palaeoneurology. Despite

the uncertainty surrounding the correspondence of cerebral

areas delimited by sulci and the functional areas of the

brain (Amunts et al. 1999), sulcal variation may reliably pre-

dict the location of primary and secondary areas in the

brain, such as visual, somatosensory and motor areas (Fischl

et al. 2008). The ability to identify sulci in endocasts of fossil

hominoids may inform our understanding of evolutionary

trends in cortical areas involved in specific functions. For

example, the evolution of the visual cortex and the Broca’s
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cap has been intensively discussed in non-human and

human fossil hominin taxa (Falk, 1980a,b, 1983, 2014; Hol-

loway, 1981; Carlson et al. 2011; Beaudet, 2017; Garc�ıa-

Tabernero et al. 2018; Holloway et al. 2018).

Technological advances in medical imaging techniques

have enabled palaeoneurologists to compare anatomical

features in more detail. Endocasts of fragmented fossil cra-

nial vaults can be virtually extracted, reconstructed and

interpreted without damaging the specimen (Spoor et al.

2000; Gunz et al. 2010; Neubauer et al. 2012, 2018; Neu-

bauer, 2014; Beaudet & Gilissen, 2018). We used high-resolu-

tion microtomography to investigate endocranial structural

organisation and variation in extant human skulls. This non-

invasive, observer-independent approach was recently used

to automatically detect sulcal imprints on fossil endocasts

(Beaudet et al. 2016a; Beaudet & Gilissen, 2018). These

studies identified a need for an atlas of variation in sulcal

patterns in extant human crania. This study documents the

variation in sulcal pattern on extant human endocasts for

subsequent use as a reference in palaeoneurological studies.

Materials and methods

We selected 20 individual, non-pathological adult crania from the

Pretoria Bone Collection (University of Pretoria, South Africa)

(L’Abb�e et al. 2005), consisting of 10 individuals of African and 10

individuals of European ancestry with equal proportions of females

and males . The crania were from individuals of known age, rang-

ing from 30 to 80 years old. We scanned the crania using micro X-

ray computer tomography at the MIXRAD facility, housed at Necsa,

Pelindaba, South Africa, at a spatial resolution ranging from 94 to

123 lm (isometric) (Hoffman & De Beer, 2012).

The endocasts were virtually extracted and reconstructed using

ENDEX software (Subsol et al. 2010) (Fig. 1A). Based on previous stud-

ies (Subsol et al. 1996, 1998), we detected the cortical relief in endo-

casts using an algorithm that automatically detects topographical

variations in, for example, crest lines on 3D meshes (Yoshizawa et al.

2007, 2008) (Fig. 1C). We manually removed the structures of no

interest, for example the imprints formed by the middle meningeal

arteries and cranial sutures, by referring to brain atlases (Connolly,

1950; Ono et al. 1990). We manually labelled the detected sulci

using a program created with MATLAB R2013a v8.1 (Mathworks) which

assigns a label to the selected curves (Beaudet et al. 2016b) (Fig. 1D).

Results

The frequencies of sulci identified on the left (LH) and right

(RH) hemispheres of the crania are alphabetically listed in

Table 1.

Frontal lobes

We identified impressions of the branches of the orbital sul-

cus on the orbital surface of all cranial endocasts. We identi-

fied a clear transverse orbital sulcus impression on nine

crania, resulting in the generally known ‘H’ or ‘Y’ pattern.

We did not consider the olfactory sulcus in any of the crania

due to the distortion caused by the impression from the

cribriform plate.

We clearly identified the fronto-orbital sulcus of the fron-

tal lobe (sensu Ono et al. 1990) in 75% of LHs and 60% of

Fig. 1 Automatic extraction of an extant human endocast using ENDEX (A). Resulting endocast mesh (B). Application of crest line detection algo-

rithm (C). Endocast after cleaning of crest lines and labelling (D).
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RHs (Figs 2 and 3). We identified the fronto-marginal sulcus

in 85% of LHs and in 100% of RHs (Fig. 2H).

We clearly identified the superior frontal sulcus in 95% of

LHs and in 90% of RHs. We observed connections between

the superior frontal sulcus and the fronto-marginal sulcus

(n = 12), middle frontal sulcus (n = 7) and precentral sulcus

(n = 2) (Figs 2 and 3).

We identified the middle frontal sulcus in 90% of LHs

and in 75% of RHs. We mostly observed a segmental pat-

tern (n = 13) (Fig. 3A).

We identified impressions of the inferior frontal sulcus in

85% of LHs and in 90% of RHs. We observed up to seven

side branches in one cranium, some of which extended

onto the orbital surface and others connecting with the

middle frontal sulcus (Fig. 3R). The inferior frontal sulcus

was not clearly defined in five crania; which may be due to

distortion caused by overlaying blood vessels (Fig. 3F). We

could only observe the precentral sulcus in 35% of the LHs

and 40% of the RHs (Figs 2 and 3).

We clearly identified the Sylvian fissure in 95% of LHs

and 85% of RHs. We could only identify the anterior hori-

zontal ramus and ascending ramus in eight LHs and four

RHs (Figs 2 and 3).

Parietal lobes

We identified the central sulcus in 55% of LHs and 50% of

the RHs (Fig. 2). We observed the postcentral sulcus in 20%

of LHs and 15% of RHs (Fig. 2A).

We identified the intraparietal sulcus on the LH of six cra-

nia and on the RH of three crania (Fig. 2A). We identified

the transverse occipital sulcus, or posterior branch of the

intraparietal sulcus (Ono et al. 1990) in 70% of LHs and

55% of RHs (Fig. 2E,F).

Occipital lobes

We identified the lateral occipital sulcus in 50% of LHs and

60% of RHs as a small sulcus along the most lateral and infe-

rior border of the occipital lobe. We identified fragments of

the lunate sulcus in 80% of LHs and 70% of RHs (Figs 2 and

3). We could also identify the lateral calcarine sulcus

(LHs = 55%; RHs = 20%) and retro-calcarine sulcus

(LHs = 20%; RHs = 10%), medial to the lunate sulcus

(Fig. 4).

Temporal lobes

We observed the superior temporal sulcus in 75% of LHs

and 90% of RHs, with the anterior segment clearly

imprinted. We observed the inferior temporal sulcus in

100% of LHs and 95% of RHs with most crania exhibiting

an anterior extension to the temporal pole (Figs 2 and 3).

When observing the basal surface of the temporal lobe,

we identified the rhinal sulcus in 25% of LHs and 60% of

RHs. The rhinal sulcus is frequently subject to a substantial

degree of distortion due to the presence of the middle

meningeal artery. We observed similar results for the collat-

eral sulcus (LHs = 25%; RHs = 0%) and the occipitotemporal

sulcus (LHs = 35%; RHs = 45%).

Left vs. Right hemisphere

We noted left–right hemisphere asymmetry for the lateral

calcarine sulcus (LHs = 55%; RHs = 20%, P < 0.05), the rhi-

nal sulcus (LHs = 25%; RHs = 60%, P < 0.05) and the collat-

eral sulcus (LHs = 20%; RHs = 0%, P < 0.05) (Fig. 5).

Male vs. Female

We did not observe any differences in sulcal patterns

between male and female crania (P > 0.05). In general, we

more readily identified sulci in female (~ 3% more fre-

quent) crania than male crania (Fig. 6). We saw sex differ-

ences in the RHs in the impression of the fronto-orbital

sulcus (M = 40%; F = 80%), precentral sulcus (M = 50%;

F = 30%), transverse occipital sulcus (M = 40%; F = 70%),

lunate sulcus (M = 80%; F = 60%), lateral calcarine

(M = 30%; F = 10%), superior temporal sulcus (M = 80%;

F = 100%), rhinal sulcus (M = 50%; F = 70%), occipitotem-

poral sulcus (M = 30%; F = 60%) and ascending ramus

(M = 30%; F = 10%). We noted sex differences in the LHs in

the impression of the precentral sulcus (M = 20%;

F = 50%), postcentral sulcus (M = 30%; F = 10%), intrapari-

etal sulcus (M = 40%; F = 20%), transverse occipital

Table 1 Frequency of sulci observed for left and right hemispheres in

human

Sulcus Left Right

anterior horizontal ramus (hr) 40% 20%

ascending ramus (ar) 40% 20%

central (c) 55% 50%

collateral (col) 25% 0%

frontomarginal (W) 85% 100%

fronto-orbital (fo) 75% 60%

inferior frontal (if) 85% 90%

inferior temporal (it) 100% 95%

middle frontal (fm) 90% 75%

intraparietal (ip) 30% 15%

lateral calcarine (lc) 55% 20%

inferior/lateral occipital (oci) 50% 60%

lunate (L) 80% 70%

occipitotemporal (oct) 35% 45%

orbital sulci (o) 100% 100%

postcentral (pt) 20% 15%

precentral (pc) 35% 40%

retro-calcarine (rc) 20% 10%

rhinal (rh) 25% 60%

superior frontal (sf) 95% 90%

superior temporal (st) 75% 90%

Sylvian fissure (S) 95% 85%

transverse occipital (otc) 70% 55%
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(M = 60%; F = 80%), lunate sulcus (M = 70%; F = 90%),

retro-calcarine sulcus (M = 30%; F = 10%), anterior hori-

zontal ramus (M = 30%; F = 50%) and ascending ramus

(M = 30%; F = 50%).

Discussion

Sulci identification

In this study, we used high-definition X-ray microtomogra-

phy to explore variation in sulcal patterns in 20 extant

human endocasts. With this method, we could reliably iden-

tify the orbital, temporal and frontal sulci and the Sylvian

fissure in more than 80% of the endocasts. Descriptions of

frequency and configuration of the orbital sulci, fronto-

marginal, fronto-orbital and lateral occipital sulci are consis-

tent with previous descriptions of brain sulci (Ono et al.

1990; Chiavaras & Petrides, 2000; Iaria & Petrides, 2007). We

were able to identify both the fronto-marginal and fronto-

orbital sulci on the endocasts, despite identification of these

features in humans being a rather controversial topic (see

Connolly, 1950; Petrides et al. 2012; Falk et al. 2018).

We could identify the precentral sulcus in fewer than half

of the individuals; this may be due to distortion by the

anterior bregmatic branch of the middle meningeal vessels

(Bruner et al. 2018). Similarly, we could not reliably identify

the postcentral sulcus, which may be due to the complex

branching networks of blood vessels covering this area.

Cerebrospinal fluid and blood vessels usually fill the main

sulci delineated functional areas and may not reproduce

well on endocasts (Zollikofer & Le�on, 2013). Additionally,

the transverse occipital sulcus can easily be misidentified on

endocasts due to the tendency of the intraparietal sulcus to

terminate posteriorly close to the lambdoid suture, which

frequently creates phantom markings on the endocast.

Various morphological and functional differences have

been noted between male and female brains (Holloway &

de Lacoste, 1986; Zilles et al. 2001; Liu et al. 2010; Glezer-

man, 2016). Although morphological differences may exist

between male and female brains, these differences may not

extend to sulcal patterns or sulcal imprint visibility (this

study). We noted significant asymmetry between the left

and right hemispheres when identifying the lateral cal-

carine sulcus, rhinal sulcus and collateral sulcus. The rhinal

and collateral sulcal imprints are frequently misidentified

on endocasts due to their vulnerability to distortion

imposed by localised bony elements, which may also

explain the perceived asymmetry. The lateral calcarine

Fig. 2 Sulcal imprints observed on the left hemisphere of 20 individuals. ar = ascending ramus, c = central, d = diagonal, W = fronto-marginal,

fo = fronto-orbital, hr = anterior horizontal ramus, if = inferior frontal, ip = intraparietal, it = inferior temporal, L = Lunate, lc = lateral calcarine,

fm = middle frontal, o = orbital, oci = inferior/lateral occipital, otr = transverse occipital, pc = precentral, pt = postcentral, rc = retro-calcarine,

S = Sylvian fissure, sf = superior frontal, st = superior temporal.
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sulcus may also be asymmetrical (LHs = 55%; RHs = 20%),

due to distortion occasionally created by overlay of the

right dominant dural venous sinus groove (Garc�ıa-Taber-

nero et al. 2018).

Minh & Hamada (2017) found that the expression of sul-

cal imprints on endocasts of Japanese macaques decreased

with age, and other studies have proposed that no new

brain expansion occurs in older individuals (Liu et al. 2010),

making it harder to identify sulcal imprints in crania of

older individuals. We excluded age as a variable due to

sample size constraints.

Implications for palaeoneurological studies

We identified sulci delimiting crucial cortical areas in the

brain in more than one-third of the crania, including the

lunate sulcus and the anterior horizontal and ascending

rami of the Sylvian fissure, which are involved in critical

debates in human palaeoneurology (Sherwood et al. 2008;

Falk, 2014). In particular, frontal sulci delimit crucial func-

tional areas in neuroscience, including language, memory

and motor functions (Petrides, 2005; Petrides et al. 2012).

The horizontal and the ascending rami of the Sylvian fis-

sure, which we identified in nearly half of the samples on

the LH, have been suggested to have emerged with the

genus Homo, but the recent discovery of a non-human

hominin endocast with an intermediate pattern between

the ape-like and human-like patterns suggests a more com-

plex scenario (Falk, 1983; Tobias, 1987; Carlson et al. 2011;

but see discussion in Falk et al. 2018) . The middle frontal

sulcus is also of particular interest in palaeoneurology due

Fig. 4 Occipital view showing the lunate sulcus impression in one

selected individual.

Fig. 3 Sulcal imprints observed on the right hemisphere of 20 individuals. ar = ascending ramus, c = central, d = diagonal, W = frontomarginal,

fo = fronto-orbital, hr = anterior horizontal ramus, if = inferior frontal, ip = intraparietal, it = inferior temporal, L = Lunate, lc = lateral calcarine,

fm = middle frontal, o = orbital, oci=inferior/lateral occipital, oct = occipitotemporal, otr = transverse occipital, pc = precentral, pt = postcentral,

rc = retro-calcarine, rh = rhinal, S = Sylvian fissure, sf = superior frontal, st = superior temporal.
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to its presence in non-human hominin endocasts and its

relationship to the dorsolateral prefrontal cortex, which is

involved in executive functions (Connolly, 1950; Van Essen,

2007; Falk, 2014). From a comparative perspective, the ros-

tral part of the middle frontal sulcus is considered to be a

homologue of the sulcus rectus in monkeys, whereas the

caudal part is unique to humans, and is associated with the

expansion of the frontal lobe (Eberstaller, 1890; Connolly,

1950; Falk, 2014).

The lunate sulcus has been extensively described in associ-

ation with human brains and is highly variable (Smith,

1903; Connolly, 1950; Ono et al. 1990; Duvernoy et al. 1999;

Holloway et al. 2004; Allen et al. 2006). Although our sam-

ple size was small, the lunate sulcus was observed in 75% of

the crania, which is more than the 62% in Ono et al. (1990)

and 51.8% in Allen et al. (2006). Larger sample sizes (stud-

ied using similar methods or other populations) could shed

more light on this matter. We observed the lunate sulcus
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Fig. 5 Frequency of sulci observed in the left and right hemispheres of human endocasts.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Male Female

Fig. 6 Frequency of sulci observed in male and female human endocasts.
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anterior to the caudal pole of the occipital lobe as frag-

mented, vertically orientated impressions, usually depicting

a curve (Fig. 4). In one case we could visualise a lunate sul-

cus as described by Allen et al. (2006), traversing a substan-

tial portion of the lateral surface of the posterior portion of

the occipital lobe. As observations were made on endocasts

and not cerebral surfaces, we are not able to comment on

whether this impression is made by a ‘true’ or a composite

lunate sulcus; however, humans generally do not have

‘true’ lunate sulci (Connolly, 1950; Allen et al. 2006; Alves

et al. 2012). Nevertheless, our ability to detect the lunate

sulcus (or, at the very least, fragments thereof) is important

due to the past and ongoing debate regarding the homol-

ogy of the lunate sulcus in humans and apes, and the iden-

tification of the lunate sulcus in early hominin endocasts

(Falk, 1980b, 2014; Holloway, 1981). The caudal placement

of the lunate sulcus in hominins older than 2 million years

may indicate early changes in the occipital lobes, probably

related to the expansion of the parietal association cortex

and a mosaic evolution of the cerebral areas (Falk, 1980b,

2014; Holloway, 1981, 2001).

We were also able to identify the lateral calcarine sulcus

more often than previously reported, namely in half of the

crania (see Connolly, 1950), whereas Alves et al. (2012) iden-

tified a calcarine fissure on the superolateral surface of the

brain at the level of the lateral occipital sulcus in 40% of

brains. The size of the calcarine sulcus and its association

with the primary visual cortex has recently been discussed

in Neanderthal brain endocasts, which revealed potential

differences in visual capacity when compared with Homo

sapiens (Garc�ıa-Tabernero et al. 2018).

In conclusion, our semi-automatic sulcal detection

approach allowed us to identify sulci involved in crucial

functions and long-standing debates in palaeoanthropol-

ogy. Despite the automatic sulci detection applied in this

study, the identification of sulci by human observers

may represent a potential bias that should be taken into

account when interpreting sulcal imprints in the fossil

record. Accordingly, this atlas will subsequently be used

to construct a statistical model documenting sulcal varia-

tion in extant humans and, ultimately, to develop a pro-

tocol for the automatic recognition of cerebral imprints

in fossil hominin endocasts, which will aid investigations

pertaining to cortical evolution in the fossil record

(Beaudet, 2017).
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